Åìµþ³°Âç2016
Japan Studies 2¡§ÆüËܸ쥳¡¼¥Ñ¥¹¤Î³èÍÑ
- ½©³Ø´ü¡¦ÌÚÍË4¸Â
- ogiso¡÷ogiso.net¡¡¢«¡÷¤ò@¤Ëľ¤·¤Æ¤¯¤À¤µ¤¤
¥¢¥¯¥Æ¥£¥Ö¥é¡¼¥Ë¥ó¥°¤Ë¤Ä¤¤¤Æ
- ¼¡¤Î¥¤¥Ù¥ó¥È¤Î¤¦¤Á¤¤¤º¤ì¤«2¤Ä°Ê¾å¤Ë»²²Ã¤·¤ÆÊó¹ð¤¹¤ë¤³¤È
¡Êº£¸å¡¢¤³¤ì°Ê³°¤Î¥¤¥Ù¥ó¥È¤â¾Ò²ð¤·¤Þ¤¹¡Ë
¥ì¥Ý¡¼¥È¤Ë¤Ä¤¤¤Æ
- BCCWJ¤È¤³¤Î¼ø¶È¤Ç¾Ò²ð¤·¤¿¼êË¡¤ò³èÍѤ·¤¿ÆüËܸ츦µæ
- ¡ºÀÚ¡§1·î26Æü(ÌÚ)
- Ëç¿ô¡§A4ÍÑ»æ¤Ç4Ëç°Ê¾å¡Á20Ëç°Ê²¼
- ¥á¡¼¥ë¤ÇÄó½Ð
2017/01/19¡¡¼ÁÌ䡦¥ì¥Ý¡¼¥È²ÝÂê¤ÎÄ´ºº¡ÊII¡Ë
- ¥ì¥Ý¡¼¥ÈºîÀ®¤òǰƬ¤Ë¡¢¥³¡¼¥Ñ¥¹¤ò»È¤¤¸¡º÷·ë²Ì¤ò³èÍѤ¹¤ë¤³¤È¤Ë´Ø¤¹¤ë¼ÁÌä¤ËÅú¤¨¤Þ¤¹¡£
- ¥ß¥Ë¥³¡¼¥Ñ¥¹¤ÎºîÀ®¤Ë´Ø¤¹¤ë¼ÁÌä¤Ë¤â¤ªÅú¤¨¤·¤Þ¤¹¡£
- ¥ì¥Ý¡¼¥È²ÝÂê¤Î¤¿¤á¤ÎÄ´ºº¤ò¿Ê¤á¤Ä¤ÄÀѶËŪ¤Ë¼ÁÌ䤷¤Æ¤¯¤À¤µ¤¤¡£
2017/01/12¡¡¼ÁÌ䡦¥ì¥Ý¡¼¥È²ÝÂê¤ÎÄ´ºº¡ÊI¡Ë
- ¥ì¥Ý¡¼¥ÈºîÀ®¤òǰƬ¤Ë¡¢¥³¡¼¥Ñ¥¹¤ò»È¤¤¸¡º÷·ë²Ì¤ò³èÍѤ¹¤ë¤³¤È¤Ë´Ø¤¹¤ë¼ÁÌä¤ËÅú¤¨¤Þ¤¹¡£
- ¥ì¥Ý¡¼¥È²ÝÂê¤Î¤¿¤á¤ÎÄ´ºº¤ò¿Ê¤á¤Ä¤ÄÀѶËŪ¤Ë¼ÁÌ䤷¤Æ¤¯¤À¤µ¤¤¡£
2017/01/05¡¡¥ß¥Ë¥³¡¼¥Ñ¥¹¤òºî¤ë
Á°²óÊä¡ʤҤޤï¤ê¤Ë¤è¤ë´û¸¤Î¥Ç¡¼¥¿¤Î³èÍÑ¡Ë
- ¥¤¥ó¥Ý¡¼¥Èµ¡Ç½¤Ç¼«Æ°À¸À®¤·¤¿XML¤ò½¤Àµ¤¹¤ë
- °À¤ÎÉÕÍ¿
- ÀßÄê¥Õ¥¡¥¤¥ë¤Î½¤Àµ
- ºÆ¥¤¥ó¥Ç¥Ã¥¯¥¹
·ÁÂÖÁDzòÀϤÎÍøÍÑ
¥¤¥ó¥¹¥È¡¼¥ë¤ÈÍøÍѤΥǥâ
#amazon(4254516029)
¥Æ¥¥¹¥È¤ÎÀ¼Á¤Ë´Ø¤¹¤ë¸ÅŵŪ¤Ê»ØÉ¸¤È¤½¤Î½Ð¤·Êý
- ¸ì¼ïÈæÎ¨
- TTR ¡ÊType Token Ratio¡Ë±ä¤Ù°Û¤Ê¤êÈæ
- ̾»ìΨ
- MVR ¡ÊModifier / Verb Ratio¡Ë
- Ê¿¶ÑʸĹ
·ÁÂÖÁDzòÀÏ·ë²Ì¤òÍøÍѤ¹¤ë¥Ä¡¼¥ë
¥Æ¥¥¹¥È½èÍý¤Î¥ì¥Ù¥ë¤È¥Ä¡¼¥ë
½èÍý | ·ÁÂÖÁDzòÀÏ¡Êûñ°Ì¡Ë¢ª | ¡ÊĹñ°Ì²òÀϡˢª | ʸÀá·¸¤ê¼õ¤±²òÀÏ¢ª | ²òÀÏ·ë²Ì¤Î´ÉÍý¡¦ÍøÍÑ |
BCCWJ¤Î¾ì¹ç | MeCab¡Ê²òÀÏ´ï¡Ë¡ÜUniDic¡Ê¼½ñ¡Ë¢ª | Comainu¢ª | ¢ª | ¡ÊÂçǼ¸À¢ª¡ËÃæÇ¼¸À |
°ìÈ̸þ¤±¥Ä¡¼¥ë | MeCab¤Ê¤É¡Ê²òÀÏ´ï¡Ë¡ÜUniDic¤Ê¤É¡Ê¼½ñ¡Ë WebÃã¤Þ¤á¢ª | ¡ÊComainu¡Ë¢ª | ¡ÊCaboCha¡Ë¢ª | Chaki.net |
2016/12/22¡¡±é½¬È¯É½»
- ½ÉÂê
- ¥ß¥Ë¥³¡¼¥Ñ¥¹¤ÎÁǺà¤òÍѰդ¹¤ë
¼«Ê¬ÍѤΥߥ˥³¡¼¥Ñ¥¹¤òºî¤ë
¡Ê¥Æ¥¥¹¥È¥Ç¡¼¥¿¤ÏÊÌÅÓÍѰդ¹¤ë¤Î¤òÁ°Äó¤È¤·¤Æ¡Ë
- ÆüËܸ쥳¡¼¥Ñ¥¹¤Î¥¿¥°ÉÕ¤±¤Î¥ì¥Ù¥ë
¥Æ¥¥¹¥È¤Î¥ì¥Ù¥ë | ¥Ä¡¼¥ë | ɬÍפʵ»½Ñ |
¥×¥ì¡¼¥ó¥Æ¥¥¹¥È | ¥Æ¥¥¹¥È¥¨¥Ç¥£¥¿ | grep¤ÈÀµµ¬É½¸½ |
¹½Â¤²½¥Æ¥¥¹¥È | ¤Ò¤Þ¤ï¤ê¢ª Excel | XML¡¦¥Þ¡¼¥¯¥¢¥Ã¥×¤Î´ðÁᤥԥܥåȥơ¼¥Ö¥ë |
·ÁÂÖÁDzòÀϺѤߥƥ¥¹¥È | UniDic+MeCab¢ªÃæÇ¼¸À¡¦ChaKi | ·ÁÂÖÁDzòÀϤÎÃμ±¡¤ChaKi¤Î»È¤¤Êý |
- ¥×¥ì¡¼¥ó¥Æ¥¥¹¥È¡§¥Æ¥¥¹¥È¥¨¥Ç¥£¥¿¡Êgrep¤ÈÀµµ¬É½¸½¡Ë¡¡¢ªº£²ó
- ¹½Â¤²½¥Æ¥¥¹¥È¡Êµì¡ÖÂÀÍÛ¥³¡¼¥Ñ¥¹¡×¤Ê¤É¡Ë¡§XML¤È¡Ö¤Ò¤Þ¤ï¤ê¡×¡¡¡¡¢ªº£²ó
- ·ÁÂÖÁDzòÀϺѤߥƥ¥¹¥È¡ÊBCCWJ¡¤CHJ¤Ê¤É¡Ë¡§¡ÖÃæÇ¼¸À¡×ÁêÅö¢«¼«Ê¬¤Çºî¤ë¤Ë¤Ï¡¢WebÃã¤Þ¤á¡¦ChaKi.net
¥×¥ì¡¼¥ó¥Æ¥¥¹¥È¤Î¥ß¥Ë¥³¡¼¥Ñ¥¹
¥Æ¥¥¹¥È¥¨¥Ç¥£¥¿¤ÈÀµµ¬É½¸½
- ½é¿´¼Ô¤Ë¤ª¤¹¤¹¤á¤ÎÀµµ¬É½¸½¤ËÂбþ¤·¤¿¥Æ¥¥¹¥È¥¨¥Ç¥£¥¿¡Ê¥Õ¥ê¡¼¡Ë
- Windows: Sakura Editor
- Mac: Mi
¼ø¶ÈÍÑ¥µ¥¯¥é¥¨¥Ç¥£¥¿¤Î¥À¥¦¥ó¥í¡¼¥É
¡ÊÀµµ¬É½¸½¥é¥¤¥Ö¥é¥êƱº¡Ë
¥µ¥ó¥×¥ë¥Æ¥¥¹¥È
Àµµ¬É½¸½
- Àµµ¬É½¸½¡¡¡äÍѸì
- ʸ»ú¤òɽ¤¹¤¿¤á¤ÎÆÃ¼ì¤Êʸ»ú¡Ê¥á¥¿Ê¸»ú¡Ë¤ò»È¤Ã¤ÆÊ¸»úÎó¤Î¥Ñ¥¿¡¼¥ó¤òɽ¸½¤¹¤ë
- ¥¨¥Ç¥£¥¿¤Ç¤ÏÃÖ´¹¡¦¸¡º÷¡¦grep¤ÇÍøÍѤǤ¤ë¡¡¡Ê¥¨¥Ç¥£¥¿°Ê³°¤Ë¤â¤µ¤Þ¤¶¤Þ¤Ê¥¢¥×¥ê¥±¡Ý¥·¥ç¥ó¤ä¥³¥ó¥Ô¥å¡¼¥¿¸À¸ì¤ÇÍøÍѤµ¤ì¤Æ¤¤¤ë¡Ë
- ÆÃ¼ì¤Êʸ»ú¡Ê¥á¥¿Ê¸»ú¡Ë¤Ï¤¹¤Ù¤ÆÈ¾³Ñ
Àµµ¬É½¸½¤Ë´Ø¤¹¤ë»²¹Í»ñÎÁ †
#amazon(4873114500)
#amazon(4873113598)
¹½Â¤²½¥Æ¥¥¹¥È¤Î¥ß¥Ë¥³¡¼¥Ñ¥¹
XML¤È¤Ò¤Þ¤ï¤ê
- XML
- ÆÈ¼«¤Î¥¿¥°¤¬ÄêµÁ¤Ç¤¤ëÈÆÍѤΥޡ¼¥¯¥¢¥Ã¥×¸À¸ì
- ¿¤¯¤Î¥³¡¼¥Ñ¥¹¤¬XML¤Çµ½Ò¤µ¤ì¤Æ¤¤¤ë¡£
- ¡Ö¸½ÂåÆüËܸì½ñ¤¸ÀÍնѹե³¡¼¥Ñ¥¹¡×¡ÊBCCWJ¡Ë¤â¡ÖÆüËܸìÎò»Ë¥³¡¼¥Ñ¥¹¡×¤â¥½¡¼¥¹¤ÏXML cf.BCCWJ¤Î¥¿¥°¥»¥Ã¥È
¤Ò¤Þ¤ï¤ê
- Á´Ê¸¸¡º÷¥·¥¹¥Æ¥à¡Ö¤Ò¤Þ¤ï¤ê¡×
- ¤¿¤À¤Î¥Æ¥¥¹¥È¥Õ¥¡¥¤¥ë¡Ê¥×¥ì¡¼¥ó¥Æ¥¥¹¥È¡Ë¤Ç¤Ï¤Ê¤¯¡¢XML·Á¼°¤Ë¤·¤Æ¡¢¥¤¥ó¥Ç¥Ã¥¯¥¹¤òÉÕ¤±¤¿ÀìÍѤΥǡ¼¥¿¤òÍøÍÑ
- ´ðËÜŪ¤Ëʸ»úÎ󸡺÷¤Î¤ß¡Ê·ÈÂÓÏÀ¾ðÊóÉÕ¤¥Ç¡¼¥¿¤Î¸¡º÷¤Ë¤Ï¤¢¤Þ¤ê¸þ¤«¤Ê¤¤¡Ë
Á´Ê¸¸¡º÷¥·¥¹¥Æ¥à¡Ö¤Ò¤Þ¤ï¤ê¡×¤Ë¤Ä¤¤¤Æ
¥Æ¥¥¹¥È¥Ç¡¼¥¿¤ò¡Ö¤Ò¤Þ¤ï¤ê¡×¤ÇÍøÍѤǤ¤ë¤è¤¦¤Ë¤¹¤ë
2016/12/15¡¡±é½¬È¯É½º
¡Ê¥ß¥Ë¥³¡¼¥Ñ¥¹ºîÀ®¤Ë¸þ¤±¤Æ¡Ë
- WebÃã¤Þ¤á
- ¸ì¼ïÈæÎ¨
- ±ä¤Ù¸ì¿ô°Û¤Ê¤ê¸ì¿ôÈæÎ¨
- Type Token Raio
- ¥Ô¥Ü¥Ã¥È¥Æ¡¼¥Ö¥ë¤Ç¤Î·×»»
2016/12/08¡¡±é½¬È¯É½¹
- ÆÃħ¸ìÃê½Ð
- ÂпôÌàÅÙÈæ Log Likelihood Ratio
- ExcelÍѤδؿô(VBA)
Public Function LogLikelihood(ByVal target As Long, comparison As Long, targetTotal As Long, comparisonTotal As Long) As Variant
a = target
b = comparison
c = targetTotal - a
d = comparisonTotal - b
If a = 0 Then aloga = 0 Else aloga = a * Log(a)
If b = 0 Then blogb = 0 Else blogb = b * Log(b)
LogLikelihood = 2 * (aloga + blogb + c * Log(c) + d * Log(d) - (a + b) * Log(a + b) - (a + c) * Log(a + c) - (b + d) * Log(b + d) - (c + d) * Log(c + d) + (a + b + c + d) * Log(a + b + c + d))
If target / targetTotal < comparison / comparisonTotal Then LogLikelihood = LogLikelihood * (-1)
End Function
2016/12/01¡¡±é½¬È¯É½¸
vlookup´Ø¿ô
¼«Ê¬¤Çºî¤Ã¤¿¥ß¥Ë¥Ç¡¼¥¿¥Ù¡¼¥¹¤ò¸¡º÷¤·¤ÆÃͤò¼è¤ê½Ð¤¹¤è¤¦¤Ê¤³¤È¤¬¤Ç¤¤ë´Ø¿ô
¥³¥í¥±¡¼¥·¥ç¥ó¶¯ÅÙ
ñ¤ËÉÑÅÙ¤ò¤ß¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¢£²¤Ä¤Î¸ì¤¬ËÜÅö¤Ë¶¦µ¯¤·¤ä¤¹¤¤¤Î¤«¤ò¿Þ¤ë»ØÉ¸
2016/11/24¡¡¡ÊµÙ¤ß¡Ë³°¸ìº×
2016/11/17¡¡±é½¬È¯É½·
(¥¢¥ë¥Ð¥¤¥ÈÊ罸)
- ¤¸¤ó¤â¤ó¤³¤ó2016¡¡¼õÉÕ¡¦²ñ¾ì·¸Åù
- 12/9¡Ê¶â¡Ë¸á¸å¡¢10(ÅÚ)¡¢11(Æü)
- »þµë1000±ß¡¢¸òÄÌÈñ¡¦ÊÛÅö»Ùµë
(Á°²óÊäÂ¥³¥á¥ó¥È)
- BCCWJ¥Ç¡¼¥¿¤ÎǯÂå¤ÎÊФê¤Ë¤Ä¤¤¤Æ
- ¡Ö¸ì¿ô¤Ë¤Ä¤¤¤Æ¡×¥Ô¥Ü¥Ã¥È½¸·×
- ·ÐǯÊѲ½¤Ï¥ì¥¸¥¹¥¿¡¼¤ò¸ÂÄꤷ¤Ê¤¤¤È¤Ç¤¤Ê¤¤¡£
- ½é½Ðõ¤·¤Ë»È¤¦¤³¤È¤Ï¤Û¤Ü¤Ç¤¤Ê¤¤¡£
¥¯¥í¥¹½¸·×ɽ¤«¤é¤Î¥³¥ì¥¹¥Ý¥ó¥Ç¥ó¥¹Ê¬ÀÏ
- ¡Ö¤ä¤Ï¤ê¡×¡Ö¤ä¤Ã¤Ñ¤ê¡×¡Ö¤ä¤Ã¤Ñ¡×¤È¥ì¥¸¥¹¥¿¡¼
yahari<-matrix(c(
1,2,0,9,4,0,
20,12,1,30,23,0,
31,54,13,17,31,2
)
,3,6,byrow = T)
colnames(yahari)<-c("»¨»ï","½ñÀÒ","¿·Ê¹","¥Ö¥í¥°","ÃηÃÂÞ","Çò½ñ")
rownames(yahari)<-c("¥ä¥Ã¥Ñ","¥ä¥Ã¥Ñ¥ê","¥ä¥Ï¥ê")
#MASS¥Ñ¥Ã¥±¡¼¥¸¤òÆÉ¤ß¹þ¤à
library(MASS)
(yahari.ca<-corresp(yahari,nf=3))
biplot(yahari.ca)
#¸ÇÍÃÍ
¸ÇÍÃÍ<-yahari.ca$cor^2¡¡
round(¸ÇÍÃÍ,3)
#ÎßÀÑ´óͿΨ
round(100*¸ÇÍÃÍ/sum(¸ÇÍÃÍ),2)
»²¹Í¥ê¥ó¥¯¡§£Ò¤ÈÂбþʬÀÏ
- ¶ÌǬ¤Îɽµ
negi<-matrix(c(
42,93,2,129,90,7,0,1,12,23,47,0,
33,36,0,65,87,6,4,36,11,0,61,6,
5,30,5,33,9,1,0,1,8,0,2,0,
97,336,0,215,225,39,0,3,15,0,92,4,
3,23,0,31,86,0,3,0,0,0,28,2
) ,5,12,byrow = T)
colnames(negi)<-c("P»¨»ï","P½ñÀÒ","P¿·Ê¹","L½ñÀÒ","¥Ö¥í¥°","¥Ù¥¹¥È¥»¥é¡¼","±¤Ê¸","¶µ²Ê½ñ","¹Êó»ï","¹ñ²ñ²ñµÄÏ¿","ÃηÃÂÞ","Çò½ñ")
rownames(negi)<-c("¥¿¥Þ¥Í¥®","¤¿¤Þ¤Í¤®","¶Ì¥Í¥®","¶Ì¤Í¤®","¶ÌǬ")
library(MASS)
(negi.ca<-corresp(negi,nf=5))
biplot(negi.ca)
¸ÇÍÃÍ<-negi.ca$cor 2¡¡
round(¸ÇÍÃÍ,3)
#ÎßÀÑ´óͿΨ
round(100*¸ÇÍÃÍ/sum(¸ÇÍÃÍ),2)
2016/11/10¡¡µÙ¹Ö
2016/10/27¡¡±é½¬È¯É½¶
- ¿ÊÑÎ̲òÀÏ
- ¼çÀ®Ê¬Ê¬ÀÏ
- ÂбþʬÀϡᥳ¥ì¥¹¥Ý¥ó¥Ç¥ó¥¹Ê¬ÀÏ
¥Ð¹Ô¥ô¥¡¹Ô
¥¡¼: (¸ì×ÃÁÇ="¥Ð¥¤¥ª¥ê¥ó" OR ¸ì×ÃÁÇ="¥Ð¥¤¥ª¥ì¥Ã¥È" OR ¸ì×ÃÁÇ="¥Ð¥¤¥¿¥ê¥Æ¥£" OR
¸ì×ÃÁÇ="¥Ð¥¤¥¥ó¥°" OR ¸ì×ÃÁÇ="¥Ð¥«¥ó¥¹" OR ¸ì×ÃÁÇ="¥Ð¥Á¥«¥ó" OR ¸ì×ÃÁÇ="¥Ð¥Ë¥é" OR
¸ì×ÃÁÇ="¥Ð¥é¥¨¥Æ¥£" OR ¸ì×ÃÁÇ="¥Ð¥ê¥¨¡¼¥·¥ç¥ó" OR ¸ì×ÃÁÇ="¥Ð¥ê¥å¡¼" OR
¸ì×ÃÁÇ="¥Ó¡¼¥Ê¥¹" OR ¸ì×ÃÁÇ="¥Ó¥ª¥é" OR ¸ì×ÃÁÇ="¥Ó¥¶" OR ¸ì×ÃÁÇ="¥Ù¡¼¥ë" OR
¸ì×ÃÁÇ="¥Ù¥Æ¥é¥ó" OR ¸ì×ÃÁÇ="¥Ù¥È¥Ê¥à" OR ¸ì×ÃÁÇ="¥Ð¡¼¥¸¥ó");
2016/10/20¡¡±é½¬È¯É½µ
2016/10/13¡¡R¤ò»È¤Ã¤Æ¤ß¤ë¡¡¡¿¡¡¸¦µæÎã¾Ò²ð
- ÃæÇ¼¸À¤ÇBCCWJ¥³¥¢¤Î¸ì×ÃÁÇ¡ÖÌðÄ¥¤ê¡×¤ò¸¡º÷¡¢¸ì·ÁÊ̤˽¸·×
| »¨»ï | ½ñÀÒ | ¿·Ê¹ | ¥Ö¥í¥° | ÃηÃÂÞ | Çò½ñ |
¥ä¥Ã¥Ñ | 1 | 2 | | 9 | 4 | |
¥ä¥Ã¥Ñ¥ê | 20 | 12 | 1 | 30 | 23 | |
¥ä¥Ï¥ê | 31 | 54 | 13 | 17 | 31 | 2 |
ÆÈΩÀ¤Î¸¡Äê(¦ÖÆó¾è¸¡Äê)
- ¥Ö¥í¥°¤ÈÃηÃÂޤǡ֤ä¤Ï¤ê¡×¡Ö¤ä¤Ã¤Ñ¤ê¡×¡Ö¤ä¤Ã¤Ñ¡×¤Î»È¤ï¤ìÊý¤Ëº¹¤Ï¤¢¤ë¤«
data <- matrix(c( 9,4,30,23,17,31), ncol=2, byrow=T)
chisq.test(data)
µ¢Ìµ²¾Àâ¡ÊH0¡Ë¡§Æó¤Ä¤Î¥ì¥¸¥¹¥¿¡¼¤È¡Ö¤ä¤Ï¤ê¡×Îà¤Î»ÈÍÑÉÑÅ٤ˤϺ¹¤¬¤Ê¤¤
¸¡Äê¤Î·ë²Ì¡¢p<0.05¤Ç¤¢¤ì¤Ð0.05(= 5%)¿å½à¤ÇH0¤Ï´þµÑ¤µ¤ì¤ë ¡áÆó¤Ä¤Î¥ì¥¸¥¹¥¿¡¼¤Ëº¹¤¬¤¢¤ë¡Ê¥ì¥¸¥¹¥¿¡¼¤È´Ø·¸¤¬¤Ê¤¤¤Î¤Ë¶öÁ³¤³¤¦¤Ê¤ë²ÄǽÀ¤Ï5%°Ê²¼¡Ë
¥¯¥é¥¹¥¿¡¼Ê¬ÀÏ
- ¡Ö¤ä¤Ï¤ê¡×¡Ö¤ä¤Ã¤Ñ¤ê¡×¡Ö¤ä¤Ã¤Ñ¡×¤Î»ÈÍѤ«¤é¸«¤¿¥ì¥¸¥¹¥¿¡¼´Ö¤Îµ÷Î¥¡Ê¤É¤Î¥ì¥¸¥¹¥¿¡¼Æ±»Î¤¬»÷¤Æ¤¤¤ë¤«¡Ë
yahari<-matrix(c(
1,2,0,9,4,0,
20,12,1,30,23,0,
31,54,13,17,31,2
)
,3,6,byrow = T)
colnames(yahari)<-c("»¨»ï","½ñÀÒ","¿·Ê¹","¥Ö¥í¥°","ÃηÃÂÞ","Çò½ñ")
rownames(yahari)<-c("¥ä¥Ã¥Ñ","¥ä¥Ã¥Ñ¥ê","¥ä¥Ï¥ê")
yahari <- t(yahari) #¹Ô¤ÈÎó¤òÆþ¤ìÂØ¤¨
yahari.d<-dist(yahari) #µ÷Î¥¤Î·×»»
yahari.d
result <- hclust(yahari.d, method="ward.D") #wordË¡¤Ç¥¯¥é¥¹¥¿¡¼Ê¬ÀÏ
plot(result,hang=-1) #¥Ç¥ó¥É¥í¥°¥é¥à¤òÉÁ¤¯
¸¦µæ¾Ò²ð
- ¡Ö¡Ø¸½ÂåÆüËܸì½ñ¤¸ÀÍնѹե³¡¼¥Ñ¥¹¡Ù¤Ë¤ª¤±¤ë²Äǽɽ¸½¤Î¥Ð¥ê¥¨¡¼¥·¥ç¥ó¡×¤è¤ê
#amazon(4274065707)
2016/10/06¡¡¥¤¥ó¥È¥í¥À¥¯¥·¥ç¥ó
- ¹ÖµÁ¡¦±é½¬¤ÎÊÌ
- 񂫪
- ¼ø¶È¤ÎÌÜɸ
- ÆüËܸ쥳¡¼¥Ñ¥¹¤ò¸¦µæ¤Ë利ÍѤ¹¤ë¤³¤È¤¬¤Ç¤¤ë¤è¤¦¤Ë¤Ê¤ë¤¿¤á¤Î¤ä¤ä¹â度¤ÊÃÎ識¤Èµ»½Ñ¤ò¿È¤Ë¤Ä¤±¤ë¡£
- ¼ø¶È¤Î³µÍ×
- ÆüËܸ쥳¡¼¥Ñ¥¹¤ò³èÍѤ¹¤ë¤¿¤á¤Îµ»½Ñ¡¢Åý·×Ū»ØÉ¸¤ä¼êË¡¤Ë¤Ä¤¤¤Æ¹ÖµÁ¤¹¤ë¡£»²²Ã¼Ô¤Ï¼ÂºÝ¤Ë¥³¡¼¥Ñ¥¹¤È¤³¤ì¤é¤Îµ»½Ñ¤ò利ÍѤ·¤¿Ä´ºº¸¦µæ¤Èȯɽ¤ò¹Ô¤¦¡£
- ¼ø¶È¤Î·×²è
- ¼ÂºÝ¤Ë¥³¡¼¥Ñ¥¹¤ò利ÍѤ¹¤ë±é½¬È¯É½¤ò¤È¤ª¤·¤Æ¡¢¥³¥í¥±¡¼¥·¥ç¥ó¤äÆÃħ¸ìÃê½Ð¤Î¤¿¤á¤Î»ØÉ¸¡¢¥¯¥é¥¹¥¿¥ê¥ó¥°¤ä¼çÀ®Ê¬Ê¬ÀϤʤɤÎÅý·×Ū¼êË¡¡¢´Ø·¸¥Ç¡¼¥¿¥Ù¡¼¥¹¤ò利ÍѤ·¤¿¥Ç¡¼¥¿¤Î½è理¡¢¥ß¥Ë¥³¡¼¥Ñ¥¹¤ò¼«ºî¤¹¤ëÊýË¡¤Ê¤É¡¢¥³¡¼¥Ñ¥¹¤ò¸¦µæ¤Ë³èÍѤ¹¤ë¤¿¤á¤ÎÊýË¡¤Ë¤Ä¤¤¤Æ³Ø¤Ö¡£
ºÇ½é¤Ë¹ÖµÁ·Á¼°¤Ç¥³¡¼¥Ñ¥¹¤Î利ÍÑË¡¤òÀâÌÀ¤·¤¿¸å¤Ï¡¢Ëè²ó»²²Ã¼Ô¤Ë¤è¤ë±é½¬È¯É½·Á¼°¤Ç¼ø¶È¤ò行¤¦¡£
- À®ÀÓ¤Îɾ²Á
- ¼ø¶ÈÂÖ度¡¦´üËö¥ì¥Ý¡¼¥ÈÅù¤òÁí¹ç¤·¤ÆÉ¾²Á¤¹¤ë¡£
- »öÁ°³Ø½¬Åù
- ôÅö¶µ°÷¤ÎÁ°´ü¤Î¼ø¶È¡ÊJapan Studies £±¡Ë¤ò履½¤¤¹¤ë¤Ê¤É¤·¤ÆÆüËܸ쥳¡¼¥Ñ¥¹¤Î´ðËÜŪ¤Ê利ÍÑÊýË¡¤ò¿È¤Ë¤Ä¤±¤Æ¤ª¤¯¤³¤È¡£