Åìµþ³°Âç2016

Japan Studies 2¡§ÆüËܸ쥳¡¼¥Ñ¥¹¤Î³èÍÑ

  • ½©³Ø´ü¡¦ÌÚÍË4¸Â
  • ogiso¡÷ogiso.net¡¡¢«¡÷¤ò@¤Ëľ¤·¤Æ¤¯¤À¤µ¤¤

¥¢¥¯¥Æ¥£¥Ö¥é¡¼¥Ë¥ó¥°¤Ë¤Ä¤¤¤Æ

¡Êº£¸å¡¢¤³¤ì°Ê³°¤Î¥¤¥Ù¥ó¥È¤â¾Ò²ð¤·¤Þ¤¹¡Ë

¥ì¥Ý¡¼¥È¤Ë¤Ä¤¤¤Æ

  • BCCWJ¤È¤³¤Î¼ø¶È¤Ç¾Ò²ð¤·¤¿¼êË¡¤ò³èÍѤ·¤¿ÆüËܸ츦µæ
  • ¡ºÀÚ¡§1·î26Æü(ÌÚ)
  • Ëç¿ô¡§A4ÍÑ»æ¤Ç4Ëç°Ê¾å¡Á20Ëç°Ê²¼
  • ¥á¡¼¥ë¤ÇÄó½Ð

2017/01/19¡¡¼ÁÌ䡦¥ì¥Ý¡¼¥È²ÝÂê¤ÎÄ´ºº¡ÊII¡Ë

  • ¥ì¥Ý¡¼¥ÈºîÀ®¤òǰƬ¤Ë¡¢¥³¡¼¥Ñ¥¹¤ò»È¤¤¸¡º÷·ë²Ì¤ò³èÍѤ¹¤ë¤³¤È¤Ë´Ø¤¹¤ë¼ÁÌä¤ËÅú¤¨¤Þ¤¹¡£
  • ¥ß¥Ë¥³¡¼¥Ñ¥¹¤ÎºîÀ®¤Ë´Ø¤¹¤ë¼ÁÌä¤Ë¤â¤ªÅú¤¨¤·¤Þ¤¹¡£
  • ¥ì¥Ý¡¼¥È²ÝÂê¤Î¤¿¤á¤ÎÄ´ºº¤ò¿Ê¤á¤Ä¤ÄÀѶËŪ¤Ë¼ÁÌ䤷¤Æ¤¯¤À¤µ¤¤¡£

2017/01/12¡¡¼ÁÌ䡦¥ì¥Ý¡¼¥È²ÝÂê¤ÎÄ´ºº¡ÊI¡Ë

  • ¥ì¥Ý¡¼¥ÈºîÀ®¤òǰƬ¤Ë¡¢¥³¡¼¥Ñ¥¹¤ò»È¤¤¸¡º÷·ë²Ì¤ò³èÍѤ¹¤ë¤³¤È¤Ë´Ø¤¹¤ë¼ÁÌä¤ËÅú¤¨¤Þ¤¹¡£
  • ¥ì¥Ý¡¼¥È²ÝÂê¤Î¤¿¤á¤ÎÄ´ºº¤ò¿Ê¤á¤Ä¤ÄÀѶËŪ¤Ë¼ÁÌ䤷¤Æ¤¯¤À¤µ¤¤¡£

2017/01/05¡¡¥ß¥Ë¥³¡¼¥Ñ¥¹¤òºî¤ë

Á°²óÊ䭡ʤҤޤï¤ê¤Ë¤è¤ë´û¸¤Î¥Ç¡¼¥¿¤Î³èÍÑ¡Ë

  • ¥¤¥ó¥Ý¡¼¥Èµ¡Ç½¤Ç¼«Æ°À¸À®¤·¤¿XML¤ò½¤Àµ¤¹¤ë
    • °À­¤ÎÉÕÍ¿
    • ÀßÄê¥Õ¥¡¥¤¥ë¤Î½¤Àµ
    • ºÆ¥¤¥ó¥Ç¥Ã¥¯¥¹

·ÁÂÖÁDzòÀϤÎÍøÍÑ

¥¤¥ó¥¹¥È¡¼¥ë¤ÈÍøÍѤΥǥâ

#amazon(4254516029)

¥Æ¥­¥¹¥È¤ÎÀ­¼Á¤Ë´Ø¤¹¤ë¸ÅŵŪ¤Ê»ØÉ¸¤È¤½¤Î½Ð¤·Êý

·ÁÂÖÁDzòÀÏ·ë²Ì¤òÍøÍѤ¹¤ë¥Ä¡¼¥ë

  • ¥Ç¥â

¥Æ¥­¥¹¥È½èÍý¤Î¥ì¥Ù¥ë¤È¥Ä¡¼¥ë

½èÍý·ÁÂÖÁDzòÀÏ¡Êûñ°Ì¡Ë¢ª¡ÊĹñ°Ì²òÀϡˢªÊ¸Àá·¸¤ê¼õ¤±²òÀÏ¢ª²òÀÏ·ë²Ì¤Î´ÉÍý¡¦ÍøÍÑ
BCCWJ¤Î¾ì¹çMeCab¡Ê²òÀÏ´ï¡Ë¡ÜUniDic¡Ê¼­½ñ¡Ë¢ªComainu¢ª¢ª¡ÊÂçǼ¸À¢ª¡ËÃæÇ¼¸À
°ìÈ̸þ¤±¥Ä¡¼¥ëMeCab¤Ê¤É¡Ê²òÀÏ´ï¡Ë¡ÜUniDic¤Ê¤É¡Ê¼­½ñ¡Ë
WebÃã¤Þ¤á¢ª
¡ÊComainu¡Ë¢ª¡ÊCaboCha¡Ë¢ªChaki.net

2016/12/22¡¡±é½¬È¯É½­»

  • ½ÉÂê
    • ¥ß¥Ë¥³¡¼¥Ñ¥¹¤ÎÁǺà¤òÍѰդ¹¤ë

¼«Ê¬ÍѤΥߥ˥³¡¼¥Ñ¥¹¤òºî¤ë

¡Ê¥Æ¥­¥¹¥È¥Ç¡¼¥¿¤ÏÊÌÅÓÍѰդ¹¤ë¤Î¤òÁ°Äó¤È¤·¤Æ¡Ë

  • ÆüËܸ쥳¡¼¥Ñ¥¹¤Î¥¿¥°ÉÕ¤±¤Î¥ì¥Ù¥ë
    ¥Æ¥­¥¹¥È¤Î¥ì¥Ù¥ë¥Ä¡¼¥ëɬÍפʵ»½Ñ
    ¥×¥ì¡¼¥ó¥Æ¥­¥¹¥È¥Æ¥­¥¹¥È¥¨¥Ç¥£¥¿grep¤ÈÀµµ¬É½¸½
    ¹½Â¤²½¥Æ¥­¥¹¥È¤Ò¤Þ¤ï¤ê¢ª ExcelXML¡¦¥Þ¡¼¥¯¥¢¥Ã¥×¤Î´ðÁᤥԥܥåȥơ¼¥Ö¥ë
    ·ÁÂÖÁDzòÀϺѤߥƥ­¥¹¥ÈUniDic+MeCab¢ªÃæÇ¼¸À¡¦ChaKi·ÁÂÖÁDzòÀϤÎÃμ±¡¤ChaKi¤Î»È¤¤Êý
  1. ¥×¥ì¡¼¥ó¥Æ¥­¥¹¥È¡§¥Æ¥­¥¹¥È¥¨¥Ç¥£¥¿¡Êgrep¤ÈÀµµ¬É½¸½¡Ë¡¡¢ªº£²ó
  2. ¹½Â¤²½¥Æ¥­¥¹¥È¡Êµì¡ÖÂÀÍÛ¥³¡¼¥Ñ¥¹¡×¤Ê¤É¡Ë¡§XML¤È¡Ö¤Ò¤Þ¤ï¤ê¡×¡¡¡¡¢ªº£²ó
  3. ·ÁÂÖÁDzòÀϺѤߥƥ­¥¹¥È¡ÊBCCWJ¡¤CHJ¤Ê¤É¡Ë¡§¡ÖÃæÇ¼¸À¡×ÁêÅö¢«¼«Ê¬¤Çºî¤ë¤Ë¤Ï¡¢WebÃã¤Þ¤á¡¦ChaKi.net

¥×¥ì¡¼¥ó¥Æ¥­¥¹¥È¤Î¥ß¥Ë¥³¡¼¥Ñ¥¹

¥Æ¥­¥¹¥È¥¨¥Ç¥£¥¿¤ÈÀµµ¬É½¸½

¼ø¶ÈÍÑ¥µ¥¯¥é¥¨¥Ç¥£¥¿¤Î¥À¥¦¥ó¥í¡¼¥É

¡ÊÀµµ¬É½¸½¥é¥¤¥Ö¥é¥êƱº­¡Ë

¥µ¥ó¥×¥ë¥Æ¥­¥¹¥È

Àµµ¬É½¸½

  • Àµµ¬É½¸½¡¡¡äÍѸì
    • ʸ»ú¤òɽ¤¹¤¿¤á¤ÎÆÃ¼ì¤Êʸ»ú¡Ê¥á¥¿Ê¸»ú¡Ë¤ò»È¤Ã¤ÆÊ¸»úÎó¤Î¥Ñ¥¿¡¼¥ó¤òɽ¸½¤¹¤ë
    • ¥¨¥Ç¥£¥¿¤Ç¤ÏÃÖ´¹¡¦¸¡º÷¡¦grep¤ÇÍøÍѤǤ­¤ë¡¡¡Ê¥¨¥Ç¥£¥¿°Ê³°¤Ë¤â¤µ¤Þ¤¶¤Þ¤Ê¥¢¥×¥ê¥±¡Ý¥·¥ç¥ó¤ä¥³¥ó¥Ô¥å¡¼¥¿¸À¸ì¤ÇÍøÍѤµ¤ì¤Æ¤¤¤ë¡Ë
    • ÆÃ¼ì¤Êʸ»ú¡Ê¥á¥¿Ê¸»ú¡Ë¤Ï¤¹¤Ù¤ÆÈ¾³Ñ

Àµµ¬É½¸½¤Ë´Ø¤¹¤ë»²¹Í»ñÎÁ

#amazon(4873114500) #amazon(4873113598)

¹½Â¤²½¥Æ¥­¥¹¥È¤Î¥ß¥Ë¥³¡¼¥Ñ¥¹

XML¤È¤Ò¤Þ¤ï¤ê

  • XML
    • ÆÈ¼«¤Î¥¿¥°¤¬ÄêµÁ¤Ç¤­¤ëÈÆÍѤΥޡ¼¥¯¥¢¥Ã¥×¸À¸ì
    • ¿¤¯¤Î¥³¡¼¥Ñ¥¹¤¬XML¤Çµ­½Ò¤µ¤ì¤Æ¤¤¤ë¡£
      • ¡Ö¸½ÂåÆüËܸì½ñ¤­¸ÀÍնѹե³¡¼¥Ñ¥¹¡×¡ÊBCCWJ¡Ë¤â¡ÖÆüËܸìÎò»Ë¥³¡¼¥Ñ¥¹¡×¤â¥½¡¼¥¹¤ÏXML cf.BCCWJ¤Î¥¿¥°¥»¥Ã¥È

¤Ò¤Þ¤ï¤ê

  • Á´Ê¸¸¡º÷¥·¥¹¥Æ¥à¡Ö¤Ò¤Þ¤ï¤ê¡×
  • ¤¿¤À¤Î¥Æ¥­¥¹¥È¥Õ¥¡¥¤¥ë¡Ê¥×¥ì¡¼¥ó¥Æ¥­¥¹¥È¡Ë¤Ç¤Ï¤Ê¤¯¡¢XML·Á¼°¤Ë¤·¤Æ¡¢¥¤¥ó¥Ç¥Ã¥¯¥¹¤òÉÕ¤±¤¿ÀìÍѤΥǡ¼¥¿¤òÍøÍÑ
  • ´ðËÜŪ¤Ëʸ»úÎ󸡺÷¤Î¤ß¡Ê·ÈÂÓÏÀ¾ðÊóÉÕ¤­¥Ç¡¼¥¿¤Î¸¡º÷¤Ë¤Ï¤¢¤Þ¤ê¸þ¤«¤Ê¤¤¡Ë

Á´Ê¸¸¡º÷¥·¥¹¥Æ¥à¡Ö¤Ò¤Þ¤ï¤ê¡×¤Ë¤Ä¤¤¤Æ

¥Æ¥­¥¹¥È¥Ç¡¼¥¿¤ò¡Ö¤Ò¤Þ¤ï¤ê¡×¤ÇÍøÍѤǤ­¤ë¤è¤¦¤Ë¤¹¤ë

2016/12/15¡¡±é½¬È¯É½­º

  • ȯɽ2·ï

¡Ê¥ß¥Ë¥³¡¼¥Ñ¥¹ºîÀ®¤Ë¸þ¤±¤Æ¡Ë

  • WebÃã¤Þ¤á
  • ¸ì¼ïÈæÎ¨
  • ±ä¤Ù¸ì¿ô°Û¤Ê¤ê¸ì¿ôÈæÎ¨
    • Type Token Raio
    • ¥Ô¥Ü¥Ã¥È¥Æ¡¼¥Ö¥ë¤Ç¤Î·×»»

2016/12/08¡¡±é½¬È¯É½­¹

  • ÆÃħ¸ìÃê½Ð
    • ÂпôÌàÅÙÈæ Log Likelihood Ratio
    • ExcelÍѤδؿô(VBA)
      Public Function LogLikelihood(ByVal target As Long, comparison As Long, targetTotal As Long, comparisonTotal As Long) As Variant
          a = target
          b = comparison
          c = targetTotal - a
          d = comparisonTotal - b
             
          If a = 0 Then aloga = 0 Else aloga = a * Log(a)
          If b = 0 Then blogb = 0 Else blogb = b * Log(b)
          
          LogLikelihood = 2 * (aloga + blogb + c * Log(c) + d * Log(d) - (a + b) * Log(a + b) - (a + c) * Log(a + c) - (b + d) * Log(b + d) - (c + d) * Log(c + d) + (a + b + c + d) * Log(a + b + c + d))
          
          If target / targetTotal < comparison / comparisonTotal Then LogLikelihood = LogLikelihood * (-1)
         
      End Function

2016/12/01¡¡±é½¬È¯É½­¸

vlookup´Ø¿ô

¼«Ê¬¤Çºî¤Ã¤¿¥ß¥Ë¥Ç¡¼¥¿¥Ù¡¼¥¹¤ò¸¡º÷¤·¤ÆÃͤò¼è¤ê½Ð¤¹¤è¤¦¤Ê¤³¤È¤¬¤Ç¤­¤ë´Ø¿ô

  • ¼ø¶È»ñÎÁ/vlookup´Ø¿ô?

¥³¥í¥±¡¼¥·¥ç¥ó¶¯ÅÙ

ñ¤ËÉÑÅÙ¤ò¤ß¤ë¤Î¤Ç¤Ï¤Ê¤¯¡¢£²¤Ä¤Î¸ì¤¬ËÜÅö¤Ë¶¦µ¯¤·¤ä¤¹¤¤¤Î¤«¤ò¿Þ¤ë»ØÉ¸

2016/11/24¡¡¡ÊµÙ¤ß¡Ë³°¸ìº×

2016/11/17¡¡±é½¬È¯É½­·

(¥¢¥ë¥Ð¥¤¥ÈÊ罸)

  • ¤¸¤ó¤â¤ó¤³¤ó2016¡¡¼õÉÕ¡¦²ñ¾ì·¸Åù
    • 12/9¡Ê¶â¡Ë¸á¸å¡¢10(ÅÚ)¡¢11(Æü)
    • »þµë1000±ß¡¢¸òÄÌÈñ¡¦ÊÛÅö»Ùµë

(Á°²óÊä­¥³¥á¥ó¥È)

  • BCCWJ¥Ç¡¼¥¿¤ÎǯÂå¤ÎÊФê¤Ë¤Ä¤¤¤Æ
    • ¡Ö¸ì¿ô¤Ë¤Ä¤¤¤Æ¡×¥Ô¥Ü¥Ã¥È½¸·×
    • ·ÐǯÊѲ½¤Ï¥ì¥¸¥¹¥¿¡¼¤ò¸ÂÄꤷ¤Ê¤¤¤È¤Ç¤­¤Ê¤¤¡£
    • ½é½Ðõ¤·¤Ë»È¤¦¤³¤È¤Ï¤Û¤Ü¤Ç¤­¤Ê¤¤¡£

¥¯¥í¥¹½¸·×ɽ¤«¤é¤Î¥³¥ì¥¹¥Ý¥ó¥Ç¥ó¥¹Ê¬ÀÏ

  • ¡Ö¤ä¤Ï¤ê¡×¡Ö¤ä¤Ã¤Ñ¤ê¡×¡Ö¤ä¤Ã¤Ñ¡×¤È¥ì¥¸¥¹¥¿¡¼
yahari<-matrix(c(
1,2,0,9,4,0,
20,12,1,30,23,0,
31,54,13,17,31,2
)
,3,6,byrow = T)
colnames(yahari)<-c("»¨»ï","½ñÀÒ","¿·Ê¹","¥Ö¥í¥°","ÃηÃÂÞ","Çò½ñ")
rownames(yahari)<-c("¥ä¥Ã¥Ñ","¥ä¥Ã¥Ñ¥ê","¥ä¥Ï¥ê")

#MASS¥Ñ¥Ã¥±¡¼¥¸¤òÆÉ¤ß¹þ¤à 
library(MASS)
(yahari.ca<-corresp(yahari,nf=3))
biplot(yahari.ca)

#¸ÇÍ­ÃÍ
¸ÇÍ­ÃÍ<-yahari.ca$cor^2¡¡
round(¸ÇÍ­ÃÍ,3)
#ÎßÀÑ´óͿΨ
round(100*¸ÇÍ­ÃÍ/sum(¸ÇÍ­ÃÍ),2)

»²¹Í¥ê¥ó¥¯¡§£Ò¤ÈÂбþʬÀÏ

  • ¶ÌǬ¤Îɽµ­
    negi<-matrix(c(
    42,93,2,129,90,7,0,1,12,23,47,0,
    33,36,0,65,87,6,4,36,11,0,61,6,
    5,30,5,33,9,1,0,1,8,0,2,0,
    97,336,0,215,225,39,0,3,15,0,92,4,
    3,23,0,31,86,0,3,0,0,0,28,2
    ) ,5,12,byrow = T)
    colnames(negi)<-c("P»¨»ï","P½ñÀÒ","P¿·Ê¹","L½ñÀÒ","¥Ö¥í¥°","¥Ù¥¹¥È¥»¥é¡¼","±¤Ê¸","¶µ²Ê½ñ","¹­Êó»ï","¹ñ²ñ²ñµÄÏ¿","ÃηÃÂÞ","Çò½ñ")
    rownames(negi)<-c("¥¿¥Þ¥Í¥®","¤¿¤Þ¤Í¤®","¶Ì¥Í¥®","¶Ì¤Í¤®","¶ÌǬ")
    
    library(MASS)
    (negi.ca<-corresp(negi,nf=5))
    biplot(negi.ca)
    
    ¸ÇÍ­ÃÍ<-negi.ca$cor 2¡¡
    round(¸ÇÍ­ÃÍ,3)
    #ÎßÀÑ´óͿΨ
    round(100*¸ÇÍ­ÃÍ/sum(¸ÇÍ­ÃÍ),2)

2016/11/10¡¡µÙ¹Ö

  • ¥·¥«¥´¤Ë¹Ô¤Ã¤Æ¤­¤Þ¤¹¡£

2016/10/27¡¡±é½¬È¯É½­¶

  • ¿ÊÑÎ̲òÀÏ
    • ¼çÀ®Ê¬Ê¬ÀÏ
    • ÂбþʬÀϡᥳ¥ì¥¹¥Ý¥ó¥Ç¥ó¥¹Ê¬ÀÏ

¥Ð¹Ô¥ô¥¡¹Ô

¥­¡¼: (¸ì×ÃÁÇ="¥Ð¥¤¥ª¥ê¥ó" OR ¸ì×ÃÁÇ="¥Ð¥¤¥ª¥ì¥Ã¥È" OR ¸ì×ÃÁÇ="¥Ð¥¤¥¿¥ê¥Æ¥£" OR
¸ì×ÃÁÇ="¥Ð¥¤¥­¥ó¥°" OR ¸ì×ÃÁÇ="¥Ð¥«¥ó¥¹" OR ¸ì×ÃÁÇ="¥Ð¥Á¥«¥ó" OR ¸ì×ÃÁÇ="¥Ð¥Ë¥é" OR
¸ì×ÃÁÇ="¥Ð¥é¥¨¥Æ¥£" OR ¸ì×ÃÁÇ="¥Ð¥ê¥¨¡¼¥·¥ç¥ó" OR ¸ì×ÃÁÇ="¥Ð¥ê¥å¡¼" OR
¸ì×ÃÁÇ="¥Ó¡¼¥Ê¥¹" OR ¸ì×ÃÁÇ="¥Ó¥ª¥é" OR ¸ì×ÃÁÇ="¥Ó¥¶" OR ¸ì×ÃÁÇ="¥Ù¡¼¥ë" OR 
¸ì×ÃÁÇ="¥Ù¥Æ¥é¥ó" OR ¸ì×ÃÁÇ="¥Ù¥È¥Ê¥à" OR ¸ì×ÃÁÇ="¥Ð¡¼¥¸¥ó"); 

2016/10/20¡¡±é½¬È¯É½­µ

2016/10/13¡¡R¤ò»È¤Ã¤Æ¤ß¤ë¡¡¡¿¡¡¸¦µæÎã¾Ò²ð

  • ÃæÇ¼¸À¤ÇBCCWJ¥³¥¢¤Î¸ì×ÃÁÇ¡ÖÌðÄ¥¤ê¡×¤ò¸¡º÷¡¢¸ì·ÁÊ̤˽¸·×
»¨»ï½ñÀÒ¿·Ê¹¥Ö¥í¥°ÃηÃÂÞÇò½ñ
¥ä¥Ã¥Ñ1294
¥ä¥Ã¥Ñ¥ê201213023
¥ä¥Ï¥ê31541317312

ÆÈΩÀ­¤Î¸¡Äê(¦ÖÆó¾è¸¡Äê)

  • ¥Ö¥í¥°¤ÈÃηÃÂޤǡ֤ä¤Ï¤ê¡×¡Ö¤ä¤Ã¤Ñ¤ê¡×¡Ö¤ä¤Ã¤Ñ¡×¤Î»È¤ï¤ìÊý¤Ëº¹¤Ï¤¢¤ë¤«
data <- matrix(c( 9,4,30,23,17,31), ncol=2, byrow=T)

chisq.test(data)

µ¢Ìµ²¾Àâ¡ÊH0¡Ë¡§Æó¤Ä¤Î¥ì¥¸¥¹¥¿¡¼¤È¡Ö¤ä¤Ï¤ê¡×Îà¤Î»ÈÍÑÉÑÅ٤ˤϺ¹¤¬¤Ê¤¤

¸¡Äê¤Î·ë²Ì¡¢p<0.05¤Ç¤¢¤ì¤Ð0.05(= 5%)¿å½à¤ÇH0¤Ï´þµÑ¤µ¤ì¤ë ¡áÆó¤Ä¤Î¥ì¥¸¥¹¥¿¡¼¤Ëº¹¤¬¤¢¤ë¡Ê¥ì¥¸¥¹¥¿¡¼¤È´Ø·¸¤¬¤Ê¤¤¤Î¤Ë¶öÁ³¤³¤¦¤Ê¤ë²ÄǽÀ­¤Ï5%°Ê²¼¡Ë

¥¯¥é¥¹¥¿¡¼Ê¬ÀÏ

  • ¡Ö¤ä¤Ï¤ê¡×¡Ö¤ä¤Ã¤Ñ¤ê¡×¡Ö¤ä¤Ã¤Ñ¡×¤Î»ÈÍѤ«¤é¸«¤¿¥ì¥¸¥¹¥¿¡¼´Ö¤Îµ÷Î¥¡Ê¤É¤Î¥ì¥¸¥¹¥¿¡¼Æ±»Î¤¬»÷¤Æ¤¤¤ë¤«¡Ë
yahari<-matrix(c(
1,2,0,9,4,0,
20,12,1,30,23,0,
31,54,13,17,31,2
)
,3,6,byrow = T)
colnames(yahari)<-c("»¨»ï","½ñÀÒ","¿·Ê¹","¥Ö¥í¥°","ÃηÃÂÞ","Çò½ñ")
rownames(yahari)<-c("¥ä¥Ã¥Ñ","¥ä¥Ã¥Ñ¥ê","¥ä¥Ï¥ê")

yahari <- t(yahari) #¹Ô¤ÈÎó¤òÆþ¤ìÂØ¤¨
yahari.d<-dist(yahari) #µ÷Î¥¤Î·×»»
yahari.d

result <- hclust(yahari.d, method="ward.D") #wordË¡¤Ç¥¯¥é¥¹¥¿¡¼Ê¬ÀÏ
plot(result,hang=-1) #¥Ç¥ó¥É¥í¥°¥é¥à¤òÉÁ¤¯

¸¦µæ¾Ò²ð

  • ¡Ö¡Ø¸½ÂåÆüËܸì½ñ¤­¸ÀÍնѹե³¡¼¥Ñ¥¹¡Ù¤Ë¤ª¤±¤ë²Äǽɽ¸½¤Î¥Ð¥ê¥¨¡¼¥·¥ç¥ó¡×¤è¤ê
#amazon(4274065707)

2016/10/06¡¡¥¤¥ó¥È¥í¥À¥¯¥·¥ç¥ó

¥·¥é¥Ð¥¹¤è¤ê

¹ÖµÁ¡¦±é½¬¤ÎÊÌ
񂫪
¼ø¶È¤ÎÌÜɸ
ÆüËܸ쥳¡¼¥Ñ¥¹¤ò¸¦µæ¤Ë利ÍѤ¹¤ë¤³¤È¤¬¤Ç¤­¤ë¤è¤¦¤Ë¤Ê¤ë¤¿¤á¤Î¤ä¤ä¹â度¤ÊÃÎ識¤Èµ»½Ñ¤ò¿È¤Ë¤Ä¤±¤ë¡£
¼ø¶È¤Î³µÍ×
ÆüËܸ쥳¡¼¥Ñ¥¹¤ò³èÍѤ¹¤ë¤¿¤á¤Îµ»½Ñ¡¢Åý·×Ū»ØÉ¸¤ä¼êË¡¤Ë¤Ä¤¤¤Æ¹ÖµÁ¤¹¤ë¡£»²²Ã¼Ô¤Ï¼ÂºÝ¤Ë¥³¡¼¥Ñ¥¹¤È¤³¤ì¤é¤Îµ»½Ñ¤ò利ÍѤ·¤¿Ä´ºº¸¦µæ¤Èȯɽ¤ò¹Ô¤¦¡£
¼ø¶È¤Î·×²è
¼ÂºÝ¤Ë¥³¡¼¥Ñ¥¹¤ò利ÍѤ¹¤ë±é½¬È¯É½¤ò¤È¤ª¤·¤Æ¡¢¥³¥í¥±¡¼¥·¥ç¥ó¤äÆÃħ¸ìÃê½Ð¤Î¤¿¤á¤Î»ØÉ¸¡¢¥¯¥é¥¹¥¿¥ê¥ó¥°¤ä¼çÀ®Ê¬Ê¬ÀϤʤɤÎÅý·×Ū¼êË¡¡¢´Ø·¸¥Ç¡¼¥¿¥Ù¡¼¥¹¤ò利ÍѤ·¤¿¥Ç¡¼¥¿¤Î½è理¡¢¥ß¥Ë¥³¡¼¥Ñ¥¹¤ò¼«ºî¤¹¤ëÊýË¡¤Ê¤É¡¢¥³¡¼¥Ñ¥¹¤ò¸¦µæ¤Ë³èÍѤ¹¤ë¤¿¤á¤ÎÊýË¡¤Ë¤Ä¤¤¤Æ³Ø¤Ö¡£ ºÇ½é¤Ë¹ÖµÁ·Á¼°¤Ç¥³¡¼¥Ñ¥¹¤Î利ÍÑË¡¤òÀâÌÀ¤·¤¿¸å¤Ï¡¢Ëè²ó»²²Ã¼Ô¤Ë¤è¤ë±é½¬È¯É½·Á¼°¤Ç¼ø¶È¤ò行¤¦¡£
À®ÀÓ¤Îɾ²Á
¼ø¶ÈÂÖ度¡¦´üËö¥ì¥Ý¡¼¥ÈÅù¤òÁí¹ç¤·¤ÆÉ¾²Á¤¹¤ë¡£
»öÁ°³Ø½¬Åù
ôÅö¶µ°÷¤ÎÁ°´ü¤Î¼ø¶È¡ÊJapan Studies £±¡Ë¤ò履½¤¤¹¤ë¤Ê¤É¤·¤ÆÆüËܸ쥳¡¼¥Ñ¥¹¤Î´ðËÜŪ¤Ê利ÍÑÊýË¡¤ò¿È¤Ë¤Ä¤±¤Æ¤ª¤¯¤³¤È¡£

¥È¥Ã¥×   ÊÔ½¸ º¹Ê¬ ¥Ð¥Ã¥¯¥¢¥Ã¥× źÉÕ Ê£À½ ̾Á°Êѹ¹ ¥ê¥í¡¼¥É   ¿·µ¬ °ìÍ÷ ¸¡º÷ ºÇ½ª¹¹¿·   ¥Ø¥ë¥×   ºÇ½ª¹¹¿·¤ÎRSS